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I started to develop Dynamic Energy Budget (DEB) theory [7] in 1979, with the aim to apply it in physiologically-

structured population models for any species of organism on earth (micro-organisms, plants, animals) and evaluate

effects of toxicants at the population level, modelled as dynamic changes in (particular toxicant-specific) parameter

values. The research program radiated substantially over time to ensure coherence with physiology, ecology and

evolution [6, 11], involving many co-workers. Metabolic transformations and behaviour are taken into account by

Synthesizing Units [5], that exploit the principle of time conservation within the class of Markov processes, while

a food-depending aging module [12, 13] specifies the bottom-line exit dynamics. Attention has been given to a

wide range of topics, such as surface area-volume relationships, cytoplasm-mitochondria interactions, organ size and

function dynamics, including tumour development, isotope dynamics, mixotrophy, parasitism and symbiosis. A large

number of popular seemingly-unrelated empirical models turn out to be special cases of DEB theory, or very good

numerical approximations, such a Kleiber’s “law” (1932), stating that respiration is proportional to body weight to the

power of (about) 3/4, and Lavoisier’s indirect calorimetry (1780), stating that heat production equals a weighted sum

of dioxygen consumption and carbon dioxide and nitrogen-waste production. This is remarkable, since DEB theory

makes no direct assumption about respiration, but still specifies it (and water dynamics) by closing the balances for

chemical elements. Being firmly based on mass and energy conservation and other thermodynamic principles [20], I

discuss arguments to expect that DEB theory will have no alternatives with a similar level of generality and simplicity

[14]. Simplicity is required for testing generality, due to practical limitations on data availability, and even the present

level of simplicity motivated the development of advanced parameter estimation methods [18, 17]. At the same, such

a theory must be detailed enough to respect biodiversity for links to evolution; a fine balance indeed. Meanwhile some

850 publications [3] have been written about the theory and its applications by a rapidly expanding community of

research workers from all over the world. The Add-my-Pet collection [2] of data, parameters and implied properties

has been set up to test the generality of the theory for animals. This collection now has over 2000 species from all larger

animal phyla; model predictions for some 3e4 data sets have a mean relative error of 0.07, supporting the generality of

the theory. Apart from a priory predictable patterns in the co-variation of parameter values on plain physical grounds

[4], patterns have been identified that relate to ecological and evolutionary adaptations, such as metabolic acceleration

[9], ‘waste-to-hurry’[8], supply-demand [15] and altricial-precocial spectra [1]. We also found explanations for some

remarkable findings, such as why the allocation fraction of mobilised reserve to soma follows a beta-distribution

among animal species, with perplexing accuracy [16]. The mean value of this parameter of all species is larger than

0.9, while a value around 0.45 maximizes reproductive output [10]. My expectation is that DEB theory will eventually

affect the way we think about ecology and evolution, in satisfying harmony with an army of early workers in this field

[19].
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