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Bacteria-Virus Communities in Marine Environments

Bacteria and Virus Communities

109 Bacterial per liter in sea water.

1010 Virus or more per liter.

Virus that parasitize Bacteria are
called Bacteriophage, or more
briefly, phage.
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Bacteria-Virus Communities in Marine Environments

Virus Life Cycle: adsorption to lysis

Latent Period: time from adsorption to burst ≈ 20 − 40 min.
Burst size: 10-1000 virus.
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Bacteria-Virus Communities in Marine Environments

Infection network of marine bacteria & virus

Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages, Flores,Valverde,Weitz, ISME
2013.
data from: Bacteriophage sensitivity patterns among bacteria isolated from marine waters, Moebus & Nattkemper, 1981
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Bacteria-Virus Communities in Marine Environments

Infection Network after resorting for modularity

Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages, Weitz et al, ISME 2013,
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Bacteria-Virus Communities in Marine Environments

Nested Infection Networks in Bacteria-Virus systems
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Bacteria-Virus Communities in Marine Environments

Infection Networks and Presence-Absence Matrices

Bacteria types Bi, 1 ≤ i ≤ n and virus types Vj, 1 ≤ j ≤ m.

Network matrix

Mij =

{
1 Vj infects Bi

0 Vj does not infect Bi

}

H.L. Smith (ASU) Virus Dynamics 11’th DSABNS, Trento, Italy 8 / 37



Bacteria-Virus Communities in Marine Environments

Nested Infection Networks

Table: Nested Network

B1 x x x
B2 x x
B3 x

V1 V2 V3

M =




1 1 1
0 1 1
0 0 1




Weitz et al* show that community persistence is facilitated by trade-offs:

bacterial growth rate increases as the number of virus that infect it
increases.

infection efficiency of virus should decrease with increasing host range.

* Jover L.F., Cortez M.H., Weitz J.S. (2013) Mechanisms of multi-strain coexistence in host phage systems with nested infection

networks, J. Theor. Biology 332: 65-77.
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Bacteria-Virus Communities in Marine Environments

Networks inspired by “Kill the Winner” hypothesis

Table: One-to-One Network

B1 x
B2 x
B3 x

V1 V2 V3

Table: One-to-One with a generalist

B1 x x
B2 x x
B3 x x
B4 x

V1 V2 V3 Z

Z = Zooplankton.

F. Thingstad, (2014), A theoretical analysis of how strain-specific viruses can
control microbial species diversity, Proc. Nat. Acad. Science
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General Lotka-Volterra Model of Bacteria & Virus

General Lotka-Volterra Model of Bacteria & Virus

dBi

dt
= Bi

(
ri −

n∑

k=1

aikBk

)

︸ ︷︷ ︸
growth and competition

−Bi

m∑

j=1

MijφijVj

︸ ︷︷ ︸
infection by virus

, 1 ≤ i ≤ n,

dVj

dt
= Vj

n∑

i=1

βijφijMijBi

︸ ︷︷ ︸
virus reproduction

− djVj︸︷︷︸
virus decay

, 1 ≤ j ≤ m

where
φij = affinity, or attack rate, of Vj for Bi.

βij = “burst size” of Vj progeny released upon lysis of Bi.

In order to focus on virus-bacteria infection network, simplify
competition among bacteria: aij ≡ a = 1, ∀i, j. Set Φij = Mijφij.
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Model Dynamics and Predictions

Basic Dynamical Features of the Model

Positive solutions, Bi(0),Vj(0) > 0,∀i, j, exist globally in time and
Bi(t),Vj(t) > 0, ∀i, j, t > 0.

Solutions are attracted to a compact subset of Rm+n
+ .

Persistence* of all bacteria and virus types requires existence of
an equilibrium with all positive components!

*(uniform) persistence: ∃ǫ > 0, such that lim inft→∞ X(t) > ǫ, ∀X ∈ {Bi,Vj},

provided all initial data are positive
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Model Dynamics and Predictions

Volterra’s Lyapunov Function

Assume the existence of an equilibrium E∗ = (B∗,V∗) with
B∗

i ,V∗
j > 0,∀i, j. Let U(x, x∗) = x − x∗ − x∗ log(x/x∗), x, x∗ > 0 and

V =
∑

i

ciU(Bi,B∗
i ) +

∑

j

djU(Vj,V∗
j )

for suitable ci > 0, dj > 0. Then

dV
dt

= −
n∑

i=1

ci(Bi − B∗
i )

n∑

k=1

(Bk − B∗
k ) +

m∑

j=1

(Vj − V∗
j )

n∑

i=1

(djβij − ci)Φij(Bi − B∗
i )

= −

(
n∑

i=1

(Bi − B∗
i )

)2

, if 0 = (djβij − ci)Φij, ci = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

For example: βij = βj, ∀i, j. Burst size independent of host.
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Model Dynamics and Predictions

LaSalle Invariance Principle

Theorem: Let dx
dt = f (x) be an ODE defined on a set G ⊂ R

n. Let
V : G → R be continuously differentiable. If for some solution x(t), the
derivative dV

dt of the map t → V(x(t)) satisfies the inequality dV
dt ≤ 0 then

the omega limit set ω of the solution satisfies

ω ∩ G ⊂ {x ∈ G : ∇V(x) · f (x) = 0}

In our example dV
dt = − (

∑n
i=1(Bi − B∗

i ))
2 so

ω ⊂ {(B,V) ∈ R
m+n :

∑

i

Bi ≡
∑

i

B∗
i }
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Model Dynamics and Predictions

Main Result

Theorem: Assume there is a positive equilibrium E∗ and βij = βj. Then

E∗ is locally stable.

Positive solutions are weakly persistent: 0 < lim inft→∞ x(t), x ∈ {Bi,Vj}.

On the omega limit set of a positive solution:

1
∑

i(Bi(t)− B∗
i ) = 0.

2 solutions satisfy the limiting system:

dBi

dt
= −Bi ·

m∑

j=1

Φij(Vj − V∗
j ), 1 ≤ i ≤ n

dVj

dt
= βjVj

n∑

k=1

Φkj(Bk − B∗
k ), 1 ≤ j ≤ m.

If E∗ is unique positive equilibrium then limt→∞
1
t

∫ t
0(B(s),V(s))ds = E∗

holds for every positive solution and the system is uniformly persistent.
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Model Dynamics and Predictions

Results for Nested Network

dBi

dt
= Bi

(
ri −

n∑

k=1

Bk

)
− Bi

∑

j≥i

φjVj, 1 ≤ i ≤ n,

dVj

dt
= βjφjVj

∑

k≤j

Bk − djVj, 1 ≤ j ≤ n

Burst and attack rates of virus j independent of host: βij = βj, φij = φj.

ej ≡
βjφj

dj
= infection efficiency of virus j

Weitz trade-off assumptions:

(a) r1 > r2 > · · · > rn: bacterial growth rate decreases with increasing
defence against infection.

(b) e1 > e2 > · · · > en: viral infection efficiency decreases with (increasing)
host range.

Then a unique positive equilibrium exists which is globally asymptotically
stable.
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Model Dynamics and Predictions

Proof Sketch

An omega limit set is contained in
∑n

i=1 Bi =
∑n

i=1 B∗
i , solutions are bounded

for all t ∈ R, and satisfy the limiting system:

dBi

dt
= −Bi

∑

j≥i

φj(Vj − V∗
j ), 1 ≤ i ≤ n,

dVj

dt
= βjφjVj

∑

k≤j

(Bk − B∗
k ), 1 ≤ j ≤ n

Observe that dVn
dt ≡ 0 so Vn(t) is constant.

Then dBn
dt = −Bnφn(Vn − V∗

n ) which, because Bn(t) is bounded, implies
that Vn ≡ V∗

n and that Bn(t) is constant.

Therefore,
∑n−1

i=1 Bi(t) is constant.

Then dVn−1

dt = βn−1φn−1Vn−1
∑

k≤n−1(Bk − B∗
k ) = 0, else Vn−1(t) is not

bounded. So
∑

k≤n−1(Bk − B∗
k ) = 0 and Vn−1(t) is constant.

Therefore, Bn(t) ≡ B∗
n because

∑n
k=1(Bk − B∗

k ) = 0. Now iterate!
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Model Dynamics and Predictions

Results for One-to-One Network

dBi

dt
= Bi(ri −

n∑

j=1

Bj)− BiVi

dVi

dt
= eidiVi(Bi −

1
ei
), 1 ≤ i ≤ n.

Unique positive equilibrium E∗ if and only if:
n∑

i=1

1
ei
< rj, 1 ≤ j ≤ n.

Theorem: The ω-limit set of a positive solution is either E∗ or it consists of
non-constant bounded solutions, (B(t),V(t)), satisfying∑n

i=1 Bi(t) =
∑n

i=1 B∗
i , t ∈ R and ∀i, (Bi(t),Vi(t)) is a positive solution of the

conservative planar system

dBi

dt
= Bi (V

∗
i − Vi)

dVi

dt
= eidiVi (Bi − B∗

i ) .

All positive solutions converge to E∗ if n ≤ 3.
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Model Dynamics and Predictions

Results for Kill the Winner Network

Results are similar to those for one-to-one network.
H = B = bacteria, P = V = virus, Z = zooplankton
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Summary of Results

Summary

Trophic Network structure influences persistence of stable
bacteria-virus communities

Volterra’s Lyapunov function together with the LaSalle invariance
principle provide effective tools for understanding bacteria-virus
and predator-prey systems.
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in vivo HIV model

HIV & CTL (Cytotoxic T Lymphocyte) Immune Response

Progression
of HIV
infection

Importance
of CTL
Immune
Response
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in vivo HIV model

CTL recognition & killing of infected cell
epitope: the part of an antigen that is recognized by the immune system.

CTL recognizes
epitope, kills
infected cell &
proliferates
clones

CTL clones
target distinct
epitopes, but
mutations can
confer resistance
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in vivo HIV model

CTL/HIV Interactions, Dynamics & Diversity

(a) HIV/CTL evolution (van Deutekom et al.) (b) Shifting immunodominance (Liu et al.)

Patterns of multi-epitope CTL response and HIV escape?

Understanding complex HIV-CTL dynamics & evolution is
important for designing vaccine/immunotherapy.
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Virus-immune Network Model

General multi-variant virus-immune response model

dX
dt

= b − dX − X
m∑

i=1

kiVi,

dYi

dt
= kiViX − δiYi − Yi

n∑

j=1

rijZj, i = 1, . . . ,m

dVi

dt
= piYi − ciVi, i = 1, . . . ,m

dZj

dt
= qjZj

m∑

i=1

rijYi − µjZj, j = 1, . . . , n.

X = target cells
Yi = cells infected with strain i
Vi = virus strain i
Zj = CTL immune response variant
j

rij = recognition/attack rate
of CTL Zj on infected cell Yi.
(rij): m × n virus-immune
interaction network.
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Virus-immune Network Model

Quasi-steady state and rescaling

Fast virus dynamics: dVi
dt = 0 ⇒ Vi(t) ∝ Yi(t)

Rescale parameters and variables X → x, Yi → yi.

ẋ = 1 − x − x
m∑

i=1

Riyi,

ẏi = γiyi


Rix − 1 −

n∑

j=1

aijZj


 , i = 1, . . . ,m

Żj =
σj

ρj
Zj

(
m∑

i=1

aijyi − ρj

)
, j = 1, . . . , n.

aij is rescaled attack/recognition rate of Zj on yi. Matrix (aij)
captures network structure.
Each virus strain yi has epitope set Λi ⊆ [1, n]: j ∈ Λi, if aij > 0.
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Results for general network model

Feasible equilibria and positivity class uniqueness

Classify equilibria E∗ = (x∗, y∗,Z∗) in R
1+m+n
+ by “persistent variant sets”:

Ωy = {i ∈ [1,m] : y∗i > 0} , Ωz =
{

j ∈ [1, n] : Z∗
j > 0

}

Positivity class corresponding to E∗:

ΓΩ = {(x, y, z) ∈ R
1+m+n
+ : yi > 0 ⇐⇒ y∗i > 0, zj > 0 ⇐⇒ z∗j > 0}

Positivity class uniqueness:

For any other equilibria E⋄ in ΓΩ, x⋄ = x∗

If E∗ is the unique equilibrium in ΓΩ, then either |Ωy| = |Ωz| or
|Ωy| = |Ωz|+ 1.
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Results for general network model

Saturated equilibria

Following Hofbauer and Sigmund (1998), we call E∗ saturated if:

ẏi

γiyi

∣∣∣∣
E∗

= Rix
∗ − 1 −

∑

j∈Ωz

aijZ
∗
j ≤ 0, ∀i /∈ Ωy,

ρjŻj

σjZj

∣∣∣∣
E∗

=
∑

i∈Ωy

aijy
∗
i − ρj ≤ 0, ∀j /∈ Ωz.

Note that these are “invasion eigenvalues” of “missing populations”. An equilibrium with all positive components is saturated.

Construct Lyapunov function W:

W = x − x∗ ln
x

x∗
+
∑

i,j

(

yi

γi
+

ρjZj

σj

)

−
∑

i∈Ωy,
j∈Ωz

(

y∗i
γi

ln
yi

y∗i
+

ρjZ∗

j

σj
ln

Zj

Z∗

j

)

d

dt
W = −

1

x∗x
(x − x∗)2 +

∑

i/∈Ωy

yi



Rix
∗ − 1 −

∑

j∈Ωz

aijZ
∗

j



+
∑

j/∈Ωz

Zj





∑

i∈Ωy

aijy
∗

i − ρj





⇒ d
dt W ≤ 0 if E∗ saturated.
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ẏi

γiyi

∣∣∣∣
E∗

= Rix
∗ − 1 −

∑

j∈Ωz

aijZ
∗
j ≤ 0, ∀i /∈ Ωy,

ρjŻj
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Results for general network model

There exists a saturated equilibria

Proof, using a homotopy argument and topological degree theory,
follows the one given for Lotka-Volterra systems in Josef Hofbauer and
Karl Sigmund text Evolutionary Games and Population Dynamics
Cambridge University Press, 1998.

A locally stable equilibrium is necessarily saturated; the existence of
Lyapunov function W implies that a saturated equilibrium is locally stable.
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Results for general network model

Theorem on Equilibria Stability & Persistent Variants

Theorem (Browne & H.S., 2018)

If E∗ = (x∗, y∗,Z∗) is saturated, then E∗ is locally stable and x(t) → x∗

as t → ∞. Furthermore, if E∗ is “strictly saturated” and is the unique
equilibrium in positivity class ΓΩ, then

i) yi,Zj → 0 for all i /∈ Ωy, j /∈ Ωz.

ii) 1
t

t∫
0

yi(s)ds → y∗i , i ∈ Ωy,
1
t

t∫
0

Zj(s)ds → Z∗
j , j ∈ Ωz

iii) yi,Zj are uniformly persistent for all i ∈ Ωy, j ∈ Ωz.

iv) If | {i ∈ Ωy : Λi ∩ Ωz 6= ∅} | ≤ 2 (≤ 2 persistent virus strains under
immune attack), then E∗ is GAS.

Proof uses Lyapunov function and LaSalle’s invariance principle.

H.L. Smith (ASU) Virus Dynamics 11’th DSABNS, Trento, Italy 29 / 37



Multi-epitope special case

Special Case

1 there are n “viral epitopes”, recognition sites on infected cell, labeled 1, 2, · · · , n.
2 each epitope is either “wild-type” 0 or “mutated” 1.
3 CTL cell Zj recognizes only epitope j if it is not mutated.
4 to each infected cell is associated a sequence

(i1, i2, · · · , in) ∈ {0, 1}n. (2n infected cell types.)
5 fitness (virus productivity) of infected cell with sequence

(i1, i2, · · · , in) is f dR1, f ∈ (0, 1) where d =
∑n

j=1 ij.

6 Zj targets its epitope at rate independent of infected cell type:
aij = aj.

7 Reproductive number Ij of Zj is aj/ρj (attack rate/removal rate).
8 Dominance hierarchy: I1 > I2 > · · · > In.
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Multi-epitope special case

example: 2 immune types, 4 infected cell types

Note that:

y2 and y3 have same fitness.

But y2 is immune to dominant CTL z1 while y3 is not!
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Multi-epitope special case

Uniform fitness costs for full n-epitope network

Let y1 be wild strain (0, 0, · · · , 0) with fitness R1 and

d(yi, y1) = |(i1, i2, · · · , in)|l1 = p ⇒ Ri = R1f p, |Λi| = n − p, 1 ≤ i ≤ 2n

ẋ = 1 − x − x
2n∑

i=1

Riyi,

ẏi = γiyi


f pR1x − 1 −

∑

j∈Λi

zj


 , 1 ≤ i ≤ 2n, d(yi, y1) = p ∈ [0, n]

żj = σjIjzj



∑

i:j∈Λi

yi − 1/Ij


 , j = 1, . . . , n, Λi = {i1, . . . , in−p} .
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Multi-epitope special case

Convergence to perfectly nested network

Under uniform mutational fitness costs, the system of 2n virus
strains converges to a perfectly nested network with less than or
equal to n + 1 persistent virus strains.

Theorem (Full (“hypercube”) network → Nested network (Browne & H.S. 2018))

Consider full network on n epitopes (m = 2n) with equal fitness costs
and strict immunodominance hierarchy. Suppose yi, i ∈ [1, n + 1], is
indexed so that Λi = {i, . . . , n} for i = 1, . . . , n, Λn+1 = ∅. Then yi(t) → 0
as t → ∞ for all i ∈ [n + 2, 2n], and the results for nested subnetwork
hold in full network, i.e. yi, zi are uniformly persistent for 1 ≤ i ≤ k ≤ n
when Rk > Qk (and yk+1 is also persistent if Rk+1 > Qk).
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Multi-epitope special case

Convergence to perfectly nested network
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Multi-epitope special case

Convergence to nested network: x(0) = 1, yi(0) = 10−2, zj(0) = 10−3
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(a) Virus Strains yi
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(b) Immune response zj

Example dynamics for n = 3
epitopes. Convergence to
“nested equilibrium” Ẽ4 where
y1, y2, y3, y4, z1, z2 persist.
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Conclusions & Extensions

Virus-immune network models: conclusions & limitations

Conclusions:

Virus/immune network models motivated by HIV/CTL dynamics &
evolution. Can be applied to other complex prey-predator
systems, e.g. bacteria/phage.

Diverse virus “quasi-species” and immune response variant
network can be built through viral resistance mutations at multiple
epitopes.

Immunodominance hierarchy most important factor determining
escape pathway (network structure).

Limitations:

Model is deterministic & no explicit mutation.

Assumptions on interaction rate forms, no intracellular or immune
activation delay.
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Conclusions & Extensions

Grazie per l’attenzione
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