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Bacteria-Virus Communities in Marine Environments

Bacteria and Virus Communities

Figure 1 | Ocean inhabitants. A photomicrograph
of a seawater sample taken off the coast of
California. The larger dots are bacteria {(about

0.5 micrometres in diameter) and the smaller ones
are viruses; both are stained with the DNA-specific
stain SY BR Green. The bacteria predominantly
belong to the SARI1 group. Zhao and colleagues”
results” suggest that many of the viruses are
pelagiphages that infect SAR11 bacteria.
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10° Bacterial per liter in sea water.
10% Virus or more per liter.

Virus that parasitize Bacteria are
called Bacteriophage, or more
briefly, phage.
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Bacteria-Virus Communities in Marine Environments

Virus Life Cycle: adsorption to lysis

Latent Period: time from adsorption to burst = 20 — 40 min.
Burst size: 10-1000 virus.
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Bacteria-Virus Communities in Marine Environments

Infection network of marine bacteria & virus

Hosts (286 nodes)

Phages (215 nodes)

Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages, Flores,Valverde,Weitz, ISME
2013.

data from: Bacteriophage sensitivity patterns among bacteria isolated from marine waters, Moebus & Nattkemper, 1981
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Bacteria-Virus Communities in Marine Environments

Infection Network after resorting for modularity

=49 Modules
Q=07%5,p<10®

Phages (215 nosas)

Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages, Weitz et al, ISME 2013,
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Bacteria-Virus Communities in Marine Environments

Nested Infection Networks in Bacteria-Virus systems
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Fig. 1. (a) Infection network from an experimental study presenting a statistically nested pattern (original data from Stenholm et al, 2008 and reanalyzed in Flores et al,
2011). The numbers identify different types of virusas and hosts. (b) Perfectly nested infection netwark, For a perfectly nested network, the numbers correspond to the rank
(ie, number of interactions). White squares denote thar a given virus can infect the host

H.L. Smith (ASU Virus Dynamics 11'th DSABNS, Trento, Italy 7137



Bacteria-Virus Communities in Marine Environments

Infection Networks and Presence-Absence Matrices

Bacteriatypes Bj, 1 <i <nandvirustypesV;, 1 <j<m

Network matrix

Mo — 1 Vj infects B;
"7 1 0 V,does notinfect B;
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Bacteria-Virus Communities in Marine Environments

Nested Infection Networks

Table: Nested Network

By | X X X
B, X X
Bs X
Vi| Vo | Vs
111
M = 011
0 01
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Bacteria-Virus Communities in Marine Environments

Nested Infection Networks

Table: Nested Network

By | X X X
B, X X
Bs X
Vi| Vo | Vs
111
M = 011
0 01

Weitz et al* show that community persistence is facilitated by trade-offs:
@ bacterial growth rate increases as the number of virus that infect it
increases.
@ infection efficiency of virus should decrease with increasing host range.

* Jover L.F, Cortez M.H., Weitz J.S. (2013) Mechanisms of multi-strain coexistence in host phage systems with nested infection

networks, J. Theor. Biology 332: 65-77.
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Networks inspired by “Kill the Winner” hypothesis

Table: One-to-One with a generalist

Table: One-to-One Network

By | x X

B1 | X B, X X
B2 X Bs X | x
Bs X B, X
Vi | Vo | V3 Vi | Vol VslZ

Z = Zooplankton.

F. Thingstad, (2014), A theoretical analysis of how strain-specific viruses can
control microbial species diversity, Proc. Nat. Acad. Science
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General Lotka-Volterra Model of Bacteria & Virus

General Lotka-Volterra Model of Bacteria & Virus

dB n m
| .
o -~ B <ri - kE_l aikBk> —Bi Y MgV, 1<i<n,

=1
growth and competition  infection by virus
dv; . :
5 = ViD_GieMiBi— gV, 1<j<m
i1 ~

virus decay

virus reproduction

where
¢ij = affinity, or attack rate, of V; for B;.

Bij = “burst size” of V; progeny released upon lysis of B;.
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General Lotka-Volterra Model of Bacteria & Virus

General Lotka-Volterra Model of Bacteria & Virus

dB n m
| .
o -~ B <ri - kE_l aikBk> —Bi Y MgV, 1<i<n,

=1
growth and competition  infection by virus
dv; . .
5 = ViD_GieMiBi— gV, 1<j<m
i1 ~

virus decay

virus reproduction

where
¢ij = affinity, or attack rate, of V; for B;.

Bij = “burst size” of V; progeny released upon lysis of B;.

In order to focus on virus-bacteria infection network, simplify
competition among bacteria: gj = a = 1, Vi,j. Set ®j; = Mj;¢j.
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Model Dynamics and Predictions

Basic Dynamical Features of the Model

@ Positive solutions, B;(0), V;(0) > 0,Vi,], exist globally in time and
Bi(t), Vj(t) > 0, Vi,j, t > 0.
@ Solutions are attracted to a compact subset of R,

@ Persistence* of all bacteria and virus types requires existence of
an equilibrium with all positive components!

*(uniform) persistence: e > 0, such that liminfi_.., X(t) > €,VX € {Bj, V;},
provided all initial data are positive
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Model Dynamics and Predictions

Volterra’s Lyapunov Function

Assume the existence of an equilibrium E* = (B*, V*) with
B, V" > 0,Vi,]. Let U(x,x") = X — X" — X" log(x/x"), x,X* > 0and

V= ZciU(Bi,Bi*) + Zde(Vj,Vj*)
| ]

for suitable ¢, > 0,d; > 0. Then

n

) DL IC - 3D S =S 31V (e — ) (B — BY)
i=1

k=1 =1 |1

2
n
= <Z(BIBI*>> , ifO:(djﬂi,-fci)%, ¢=11<i<n 1<j<m

i=1
For example: ﬁ” = ﬁj’ V|,j Burst size independent of host.
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Model Dynamics and Predictions

LaSalle Invariance Principle

Theorem: Let %X = f(x) be an ODE defined on a set G C R". Let
V:G—=R be continuously differentiable. If for some solution x( ), the
derivative & ¥ of the map t — V(x(t)) satisfies the inequality & S < Othen
the omega I|m|t set w of the solution satisfies

wNGC {xeG:VV(x) -f(x) =0}

H.L. Smith (ASU) Virus Dynamics 11'th DSABNS, Trento, Italy 14 /37



Model Dynamics and Predictions

LaSalle Invariance Principle

Theorem: Let %X = f(x) be an ODE defined on a set G C R". Let
V:G—=R be continuously differentiable. If for some solution x( ), the
derivative & ¥ of the map t — V(x(t)) satisfies the inequality & S < Othen
the omega I|m|t set w of the solution satisfies

wNGC {xeG:VV(x) -f(x) =0}

In our example & = — (X1 (B — B))® so

wc{BV)eR™: Y B =Y B}
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Model Dynamics and Predictions

Main Result

Theorem: Assume there is a positive equilibrium E* and g = f;. Then
@ E* is locally stable.
@ Positive solutions are weakly persistent: 0 < liminfi_... X(t), x € {B;, V;}.
@ On the omega limit set of a positive solution:

0 Zi(Bi(t) - Bi*) =0.

© solutions satisfy the limiting system:

dB; u

I E H
E = —Bi.jgl(l)ij(\/j—\/j),lglgn
dv; :

d_tj = BV ®(Bc—B), 1<j<m

k=1

H.L. Smith (ASU) Virus Dynamics 11'th DSABNS, Trento, Italy 15/37



Model Dynamics and Predictions

Main Result

Theorem: Assume there is a positive equilibrium E* and g = f;. Then
@ E* is locally stable.
@ Positive solutions are weakly persistent: 0 < liminfi_... X(t), x € {B;, V;}.

@ On the omega limit set of a positive solution:

0 Zi(Bi(t) - Bi*) =0.

© solutions satisfy the limiting system:

dB;
& = Z @ji (V. ,1<i<n
av, . .
d—tJ = BV Z‘I’kj(Bk -B), 1<j<m
k=1
@ If E* is unique positive equilibrium then iMoo 2 i fo s))ds = E*

holds for every positive solution and the system is unlformly perS|stent.
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Model Dynamics and Predictions

Results for Nested Network

dB; : .
d_tl Bi<fi—ZBk)—BiZ¢j\/j71§|§n,

k=1 >

av, .
& = BaVvid_B—dv, 1<j<n
k<j
Burst and attack rates of virus j independent of host: g = 5;, ¢ij = ¢;.
= % = infection efficiency of virus j
|

Weitz trade-off assumptions:
(@) ri1>ry > --- > ry: bacterial growth rate decreases with increasing
defence against infection.

(b) &1 > e > --- > ey viral infection efficiency decreases with (increasing)
host range.

Then a unigue positive equilibrium exists which is alobally’asymptotically
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Proof Sketch

An omega limit set is contained in "', B = >_ , By, solutions are bounded
for all t € R, and satisfy the limiting system:

dB;

E == —B| Z¢] 1 < | < n
j>i

@y,

BieVi > (Bk—Bp), 1<j<n

dt k<]

@ Observe that &= = 050 V;(t) is constant.

@ Then & = —B,¢,(Vy — ;) which, because By(t) is bounded, implies
that Vn = V;r and that B,(t) is constant.

@ Therefore, Y1, Bi(t) is constant.

® Then 4= = B, 10 1Vn1 Y cn 1 (Bk — By) = 0, else Vy_1(t) is not
bounded. So >, ;(B« — By) = 0and Vh_4(t) is constant.

@ Therefore, Bn(t) = B} because Y p_, (B« — B;) = 0. Now iterate!
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Model Dynamics and Predictions

Results for One-to-One Network

dB;

5 = B(i- ; B) — BiVi

av; 1 .

d_tl = adivi(Bi_a); 1<i<n

n
Unique positive equilibrium E* if and only if: > al <r,1<j<n

i=1
Theorem: The w-limit set of a positive solution is either E* or it consists of
non-constant bounded solutions, (B(t), V(t)), satisfying
Sy Bi(t) =31 B, te Rand Vi, (Bi(t), Vi(t)) is a positive solution of the
conservative planar system

dB, .
@ - BV

av;

—dtl = adV (Bi — BI*) .

All positive solutions converge to E* if n < 3.
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Model Dynamics and Predictions

Results for Kill the Winner Network

p P, P
3 Y
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Results are similar to those for one-to-one network.
H = B = bacteria, P =V = virus, Z = zooplankton

H.L. Smith (ASU) Virus Dynamics 11'th DSABNS, Trento, Italy 19/37



Summary of Results

Summary

@ Trophic Network structure influences persistence of stable
bacteria-virus communities

@ \olterra’s Lyapunov function together with the LaSalle invariance
principle provide effective tools for understanding bacteria-virus
and predator-prey systems.
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in vivo HIV model

HIV & CTL (Cytotoxic T Lymphocyte) Immune Response
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in vivo HIV model

CTL recognition & killing of infected cell

epitope: the part of an antigen that is recognized by the immune system

CTL Killing of Infected Targets
Infected colt

~— MEC 1~ pepude

CTL recognizes
epitope, kills

@ e
infected cell &

v
@b- " ’\ 7 ;
- s proliferates
clones

'\ s\

®

1@ -—

CTL clone

cell numbers

®
l $ CTL clones
| target distinct
eiope (1) ® epitopes, but
mutations can

vialgenome [ 0. 0 [x{x] o fo[xio]olo] [oi0]
confer resistance
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CTL/HIV Interactions, Dynamics & Diversity

021283463 91 175 273333 670
i 1 i

100 200 300 400 500 600
Days after Fiebig /Il

(a) HIV/CTL evolution (van Deutekom et al.) (b) Shifting immunodominance (Liu et al.)

@ Patterns of multi-epitope CTL response and HIV escape?

@ Understanding complex HIV-CTL dynamics & evolution is
important for designing vaccine/immunotherapy.
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Virus-immune Network Model

General multi-variant virus-immune response model

dx i
T b—dX—XZk.—Vi,
i=1
dY; " .
El =kViX=aYi =YY 1z, i=1...,m
j=1
avi :
EI =pYi—-cV, i=1...,m
dz, T :
Ej = querini —,uij, j=1...,n
i=1
@ X = target cells @ rjj = recognition/attack rate
@ Y; = cells infected with strain i of CTL Z on infected cell ;.
@ V; = virus strain i @ (rjj): mx nvirus-immune
@ Z = CTL immune response variant interaction network.
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Quasi-steady state and rescaling

@ Fast virus dynamics: & =0 = Vi(t)  Yi(t)
@ Rescale parameters and variables X — X, Y; — ;.

m
X= 1—x—xZRiyi,

i=1

n
V=i [Rix—1-) &z], i=1...,m
j=1

m
i .
=7 (Z&j%ﬂj), i=1...,n
P i=1

@ g; is rescaled attack/recognition rate of Z; on y;. Matrix (&)
captures network structure.

@ Each virus strain y; has epitope set A; C [1,n]: j € A, if g > 0.
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Results for general network model

Feasible equilibria and positivity class uniqueness
Classify equilibria £* = (x*,y*, Z*) in RI*™™" by “persistent variant sets”:

Qy={iel,m:y >0, Q={elln:Z >0}

Positivity class corresponding to £*:

To={(xy,2 €ERH}™":y >0 < y/>0,3>0 < z >0}

Positivity class unigqueness:
@ For any other equilibria £° in T'q, xX* = x*

@ If £* is the unique equilibrium in T'g, then either [Qy| = || or
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Results for general network model

Saturated equilibria

Following Hofbauer and Sigmund (1998), we call £* saturated if:

Vi " * -
=RiXx —1-— giZ" <0, Vig¢Qy,
YiYi £ I jEZQz 13 ¢ y
Z
pJ—ZJ => ay —p <0, V¢
%icler eq,

Note that these are “invasion eigenvalues” of “missing populations”. An equilibrium with all positive components is saturated.
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Results for general network model

Saturated equilibria

Following Hofbauer and Sigmund (1998), we call £* saturated if:

Vi , x -

—| =RiX*—1-» &Z <0, Vid¢g{y,
YiYi £ I JEZQZ 1 ¢ Y
pjzj :E:_,_.<o Vi d Q

O_sz e a'JYIQ< P =Y, | ¢ z

icqy

Note that these are “invasion eigenvalues” of “missing populations”. An equilibrium with all positive components is saturated.

Construct Lyapunov function W:

7 * . Z* 7Z:
W=x—xInX +Z(y' PH) S (L)X 05,4
o icay, \ Y 9
j€Q2
d

W= x)+Zy,(R,x —l—Za”J>+ZZj<Zaini*_Pi>

igQy €, 2y, ieQy

= 4W < 0if £* saturated.
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Results for general network model

There exists a saturated equilibria

Proof, using a homotopy argument and topological degree theory,
follows the one given for Lotka-Volterra systems in Josef Hofbauer and
Karl Sigmund text Evolutionary Games and Population Dynamics
Cambridge University Press, 1998.

A locally stable equilibrium is necessarily saturated; the existence of
Lyapunov function W implies that a saturated equilibrium is locally stable.
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Results for general network model

Theorem on Equilibria Stability & Persistent Variants

Theorem (Browne & H.S., 2018)

If £ = (x*,y*,Z*) is saturated, then £* is locally stable and x(t) — x*
ast — oo. Furthermore, if £* is “strictly saturated” and is the unique
equilibrium in positivity class I'q, then

i) yi,Zj — Oforalli & Qy,j ¢ Qz
i) tfy. )ds — i, 1€ Qy, thJ ds—>Z* j €9y

iii) y,,ZJ are uniformly perS|stent foralli € Qy,j € Q.

v) If[{i € Qy: AiNQ;# 0} | < 2 (< 2 persistent virus strains under
immune attack), then £* is GAS.

@ Proof uses Lyapunov function and LaSalle’s invariance principle.
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Multi-epitope special case

Special Case

0 there are n “viral epitopes”, recognition sites on infected cell, laDEled 1,2, -+, n.
@ each epitope is either “wild-type” 0 or “mutated” 1.
© CTL cell Z recognizes only epitope j if it is not mutated.
© to each infected cell is associated a sequence

(1,12, ,in) € {0,1}". (2" infected cell types.)
@ fitness (virus productivity) of infected cell with sequence

p Y q

(i1,i2,--- ,in) isf9Ry, f € (0,1) whered = 31, ij.

© Z targets its epitope at rate independent of infected cell type:
i

aj = §.
@ Reproductive number Z; of Z; is g/ pj (attack rate/removal rate).
@ Dominance hierarchy: Z; > Ip > - - - > I,.
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Multi-epitope special case

example: 2 immune types, 4 infected cell types

QO 1 EDEn va]ll
- _x‘_iys /
01

Note that:
@ Y, and y3 have same fitness.
@ Buty, is immune to dominant CTL z; while y; is not!
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Multi-epitope special case

Uniform fithess costs for full n-epitope network
Let y; be wild strain (0,0, - - - ,0) with fithess R, and

d(yiayl) - |(i17i27'” sin)||1 :p:>RI :leps‘A” =n-pP, 1§ [ S 2n

2n

X= 1—x—xZRiyi,
i=1

Vi =i (prlX—l—ZZj) , 1<i<2% d(yi,y1) =pe€[0n]

JEA;

7 = 017 (Z y.1/z,>,j=1,...,n, Ai = {i1, ..., in_p}-

i:jeA;
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Convergence to perfectly nested network

@ Under uniform mutational fitness costs, the system of 2" virus

strains converges to a perfectly nested network with less than or
equal to n + 1 persistent virus strains.

Theorem (Full (“hypercube”) network — Nested network (rowne & H.s. 2018))

Consider full network on n epitopes (m = 2") with equal fitness costs
and strict immunodominance hierarchy. Suppose i, i € [1,n+ 1], is
indexed so that Aj = {i,...,n}fori=1,....n, Anr1 = 0. Theny;(t) —» 0
ast— oo foralli € [n+ 2,2", and the results for nested subnetwork
hold in full network, i.e. y;, z are uniformly persistentfor 1 <i <k <n
when Ry > O (and y,1 is also persistent if Ry, 1 > Q).
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Multi-epitope special case

Convergence to perfectly nested network

Y1 OO —
Epitope Sct >< As =0
A':{LZ"S}\ _Oll/l(ya,y:)::S

|A;| = 2 Al =1
2(yi> 1) — 1 Ay ) — 2
s ws
1 1QO0 110
0o T P T
TS TR Ty
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Multi-epitope special case

Convergence to nested network: «o -1 yo

Time

(a) Virus Strains y;

@ Example dynamics forn =3
epitopes. Convergence to

“nested equilibrium” £, where

Y1,Y2,Ys, Y4, 21, Z» Persist.
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Virus-immune network models: conclusions & limitations
Conclusions:

@ Virus/immune network models motivated by HIV/CTL dynamics &
evolution. Can be applied to other complex prey-predator
systems, e.g. bacteria/phage.

@ Diverse virus “quasi-species” and immune response variant
network can be built through viral resistance mutations at multiple
epitopes.

@ Immunodominance hierarchy most important factor determining
escape pathway (network structure).

Limitations:
@ Model is deterministic & no explicit mutation.

@ Assumptions on interaction rate forms, no intracellular or immune
activation delay.
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Conclusions & Extensions
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