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Introduction

•We analyze two modifications of the susceptible-
infected-susceptible (SIS) model that preserve its
central properties.
• The epidemic thresholds are the same of the original

dynamics in heterogeneous (HMF) and quenched
(QMF) mean-field theories.
• Simulations yield a dual scenario: the thresholds

can be dramatically altered or remain unchanged.

Networks as substrates

• For a pair (i, j), the element of the adjacency ma-
trix is Aij = 1 when they are connected and 0
otherwise.
• The degree is given by ki = ∑j Aij. The moments
〈kn〉 are given by the Ps(k).
•A hub has k � 〈k〉. Outliers have degree given

by NP(k) � 1 in an ensemble of networks with
degree distribution P(k), k = k0, · · · , kc.
• Power-law (PL) distributions P(k) ∼ k−γ, k ∈
[k0, N], have 〈kmax〉 ∼ N

1
γ−1.

•A structural cutoff is defined here as kc =
√

N.
We can also consider a rigid one as NP(kc) = 1
such that kmax ∼ N1/γ. We use k0 = 3.

The SIS epidemic models

In all investigated models, infected vertices are
spontaneously healed with rate µ. The infection
process, however, is different.

SIS-T (threshold)

• Susceptible vertices become infected with rate λ
if they have at least one infected neighbor.

SIS-A (all)

• Infected vertices infect at once all susceptible
neighbors with rate λ.

SIS-S (standard)

• Infected vertices independently infect each sus-
ceptible neighbor with rate λ.

Fig. 1: Some infection processes in the SIS models.
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P(A)
leaf (s) = λ∆tδs,k, (2)

P(S ,A)
center (s) = 1− (1− λ∆t)s ≈ λs∆t, (3)

P(T )
center = λ∆t. (4)

In lattices, all models belong to the directed percolation
universality class.

Mean-field analysis

•HMF theory, with Θk = ∑k′ P(k′|k)ρk′:
dρk
dt

= −µρk + λ(1− ρk)Ψk(Θk), (5)

where Ψk(Θk) = kΘk for SIS-S and SIS-A, and
Ψk(Θk) = 1− (1−Θk)

k for SIS-T .
•QMF theory:

dρi
dt

= −µρi + λ(1− ρi)Ψi, (6)

where Ψi = ∑j Aijρj for SIS-S and SIS-A, and Ψi =
1−∏j|Aij=1(1− ρj) for SIS-T .

• The mean-field thresholds can be obtained by
dρk
dt

= −µρk + λ ∑
k′

Ckk′ρk′ (7)

and
dρi
dt

= −µρi + λ ∑
j

Aijρj (8)

where Ck′k = kP(k′|k).
•Condition: largest eigenvalues of the Jacobians

JHMF
kk′ = −µδkk′ + λCkk′ and JQMF

ij = −µδij + λAij are
zero.
•Consider µ = 1. For the HMF theory, we have

λHMF
c =

1
Υmax

, (9)

where Υmax is the largest eigenvalue of Ckk′.
• For uncorrelated networks, we obtain

λHMF
c =

〈k〉
〈k2〉. (10)

λQMF
c =

1
Λmax

, (11)

where Λmax is the largest eigenvalue of Aij.
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Fig. 2: HMF theory and simulations on annealed networks
with N = 105 and γ = 3.5. (a) QS density, (b) susceptibil-
ity χ = N[〈ρ2〉 − 〈ρ〉2]/〈ρ〉, and (c) finite-size dependence.
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Fig. 3: Thresholds for PL networks with structural cutoff.

Activation mechanisms

• τk: recovery time in a star graph of size k.
• τinf: time that hubs take to mutually transmit the

infection to each other.
• If τk � τinf, the epidemics is triggered by the

mutual activation of hubs.
• If τk . τinf, a finite fraction of the network is

responsible. For the SIS models, we have:

τSk ≈
2
µ exp

(
λ2

µ2k
)

, τAk ≈
2
µ, τTk ≈

0.92
µ ln k

Upper bound for uncorrelated networks:

τ
(inf)
kk′ ≤ τkk′ =

1
λ

[
N〈k〉
kk′

]b(λ)
, (12)

where b(λ) = ln(1 + µ/λ)/ ln κ and κ = 〈k2〉/〈k〉.
Activation mechanisms for γ > 3

Fig. 4: (a) Activity lifespan on star graphs. 103 to 105 runs.
(b) Mutual reinfection of hubs scaled by Eq. (12). N = 106,
γ = 3.5, k = 50 and λ = 0.05.

Activation mechanisms for 2 < γ < 3

Fig. 5: Epidemic thresholds (a) on the maximum k-core and
on star graphs with kmax ≈

√
N; (b) on the max. k-core plus

the nearest-neighbors (NN) of a PL network with γ = 2.7.

Finite-size scaling (FSS)

•We fit the critical QS density and susceptibility as

ρ ∼ N−ν, χ ∼ Nφ.

• For γ = 2.25 and 2.7, kc =
√

N.
• For γ = 3.5, kc ∼ N1/γ.

Fig. 6: FSS for the SIS models on PL networks.

Table 1: Critical exponents of the FSS.

Model γ = 2.25 γ = 2.7 γ = 3.5
ν νann ν νann ν νann

T 0.845(6) 0.84(2) 0.697(4) 0.692(6) 0.55(1) 0.555(3)
A 0.519(9) 0.517(4) 0.52(1) 0.515(9) 0.499(6) 0.49(3)
S 0.63(2) 0.655(2) 0.60(2) 0.57(1) – 0.506(7)

φ φann φ φann φ φann

T 0.167(2) 0.169(1) 0.353(1) 0.352(1) 0.458(1) 0.467(3)
A 0.530(2) 0.528(2) 0.514(1) 0.513(1) 0.494(1) 0.497(1)
S 0.329(5) 0.329(4) 0.372(1) 0.421(1) – 0.496(1)

Conclusions

Table 2: Activation mechanisms for different epidemic models.

Model 2 < γ < 5/2 5/2 < γ < 3 γ > 3
SIS-S max k-core hub hub
SIS-T max k-core max k-core collective
SIS-A max k-core max k-core collective
SIRS max k-core max k-core collective
CP collective collective collective

• For 2 < γ < 3, there is a null threshold irrespective
of the existence of locally activated hubs.
• The metastable, localized, and active states of the

SIS-S for γ > 3 are not universal and may be unre-
alistic.
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