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Main aim

Use of DEB theory for modelling of individuals

(lecture Bas Kooijman) and use for modelling population

model, including Add-my-Pet collection code and parame-

ter values

Case study to illustrate the approach

Allows for comparative studies of population dynamics be-

tween species including population feedback on resources

and predation by predators

In communities or ecosystems species differ only in DEB

parameters values



Outline

• Dynamic Energy Budget individual model

• Formulation of Cohort Projection Model (CPM)

• Case study electric ray fish Torpedo marmorata popu-

lation

• Constant or periodical environment

• Predator (structured) – prey (unstructured) model



Diagram with the powers DEB with i-states a, V, [E], EH
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Three stages

0 ≤ a ≤ ab embryonic: no feeding no reproduction
ab ≤ a ≤ ap juvenile: feeding no reproduction
ap ≤ a ≤ n adult: feeding reproduction

Individual variables:
a: age
V : Structural volume
[E]: Reserve density
EH: Energy allocated to maturity

Population variables:
t: time
X: food density
N : population density



DEB-individual model a: age t: time

{
dV
da = κ({ṗAm}/[Em])[E]V 2/3−k̇M [EG]V

κ[E]+[EG]
, E0

H ≤ EH⎧⎨
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H
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f(X(t)): forcing function (food)



Interaction with food X

Scaled Holling type II functional response:

f(X(t)) =
X(t)

Xk +X(t)

Functional response F(t):

F(X(t)) =

⎧⎨
⎩

0 if EH ≤ Eb
H

{ṗXm} X(t)
Xk+X(t)V

2/3 if EH ≥ Eb
H

,

where Xk is the half-saturation constant and we use the

fact that embryo’s do not feed.



Reproduction

Sex ratio is assumed to be 1:1

and male and female eggs/foetuses are equally costly; only
females directly contribute to the production of off-spring.
Reproduction efficiency only aspects the conversion of the
contents of the reproduction buffer to off-spring, so the
idea is that half of it is ‘lost’ for the production of males.

Reproduction is Periodical, Synchronous and Iteroparous

No post-reproductive period

Multiple reproductive cycles over the course of its lifetime
occurs for all individuals at years j = 0 . . .

Examples: fish populations as a specific short period of
the year with spawning related to mating success but also
by food availability for the offspring



Conditions at fertilisation

Two issues related to Initial conditions at fertilisation not

discussed here

1. Property of Von Bertalanffy model

2. Energy reserves are densities and defined [E] = E/V



Von Bertalanffy model

Von Bertalanffy individual growth model

dV

dt
= αV 2/3 − βV V (0) = V0

The solution initial value problem

V (t)1/3 =
α

β
+ (V

1/3
0 − α

β
)e−β/3 t

with limt→∞ V (t)1/3 = α/β

We introduce the two new parameters rB and L∞

L(t) = V (t)1/3 , rB =
β

3
, L∞ =

α

β

then

L(t) = L∞ − (L∞ − L0)e
−rB t



Explanation Von Bertalanffy model for small initial value

dL3

dt
= αL2 − βL3 = 3L2dL

dt

L(0) = V (0) = 0 gives V (t) = 0

or dividing by L2 gives

3
dL

dt
= α− βL

L(t) = L∞ − (L∞ − L0)e
−rB t

Positive solution while L(0) = V (0) = 0

Division by L2 gives problems for L ↓ 0

No creationism needed just mathematics



Conditions at fertilisation

Division by zero volume for the energy reserves [E](a) at
a = 0 is not possible and therefore the initial conditions
are not well defined

Assume that at a small age a0 amount of energy reserves
supplied by mother to embryo equals E(a0) = E0
Regular perturbation gives

V (a0) =

({ṗAm}
3[Em]

a0

)3

[E](a0) =
E0

V (a0)
= E0

({ṗAm}
3[Em]

a0

)−3

EH(a0) =
1− κ

κ
[EG]

({ṗAm}
3[Em]

a0

)3
k̇M
k̇i

Alternatively experimental data at a0 can be used



Aeging model

The ageing module of DEB theory is based on respiration
dependent production of (self-replicating) damaging com-
pounds
Generalisation of Gompertz and Weibull models

Two additional i-state DEB variables depending on specific
growth rate ṙ = dV

da /V : acceleration q̈(a) and hazard rate
ḣa(a)

d

da
q̈ = (q̈

V

Vm
sG + ḧa)e(

v̇

V 1/3
− ṙ)− ṙq̈ ,

d

dt
ḣa = q̈ − ṙḣa

The initial conditions for a newborn read

q̈(0) = 0 , ḣa(0) = 0

sG and ḧa are parameters



Population variable

Individual level S(a) survival function describes the loss of

individuals due to back-ground mortality

dS

da
= −ḣaS(a) , S(0) = 1

Population level N(t) is used when ageing and/or other

losses via interaction with environment

dN

dt
= −ḣaN(t) , plus other loss rates , N(0) = N0

We used i-state variable H(a) = EH(a)+ER(a) the cumu-

lative energy allocated to maturity and reproduction



Outline

• Dynamic Energy Budget individual model

• Formulation of Cohort Projection Model (CPM)

• Case study electric ray fish Torpedo marmorata popu-

lation

• Constant or periodic environment

• Predator (structured) – prey (unstructured) model



CPM Generations i = 0 · · ·n

Use of the Lagrangian description following Cohorts life-
long

Two individuals with the same i-state at fertilisation remain
identical lifelong, that is have the same i-states for all a ≥ 0

Periodical, Synchronous, Iteroparous reproduction

Generations i = 0 · · ·n, n is maximum age and also the last
year of reproduction after which death

Reformulate the problem in terms of the classical non-
linear dynamical system theory by vector of state variables
for whole population

X =
(
V0 · · ·Vn E0 · · ·En H0 · · ·Hn S0 · · ·Sn N0 · · ·Nn X

)T
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Ṽi

[Ẽi]
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Assumption that environment is periodically (one year)

where the time of reproduction is used as the monitoring

date (a = 0)

The time is indicated by

super-index j = mod(t,365) in days

sub-index i counts the generations starting at the begin-

ning of the time intervals j · · · j + n

age of an individual = 365i + a and lives at time t =

365(j + i) + a

Hence, state variables are only piecewise smooth with cyclic

boundary conditions and jumps (from emptying reproduc-

tion buffer) and boundary condition at age a = 0 of the

first year cohort



Stroboscopic map

In the first step for with-in year dynamics solving the set

of couple ode equations for DEB variables together

In the second step reproduction rules (emptying reproduc-

tion differ and formation of embryo’s form the model)

A stroboscopic (next-generation) map Φ is defined as

Xj+1 = Φ (Xj) ,

where j · · · denotes an iteration of generations



Analysis

Calculation of the fixed points of map gives equilibrium

of the age distributions for the i-states and the p-state

Equilibrium or fixed point conditions:

Xj+1 = Xj

V
j+1
i = V

j
i , [Ei]

j+1 = [Ei]
j , E

j+1
Hi = E

j
Hi , S

j+1
i = S

j
i

N
j+1
i = N

j
i , Xj+1 = Xj , i = 0, · · ·n , j ≤ 0

Numerical solution obtained by a combination of an ODE-

solver and Newtonian method to solve the nonlinear set of

equations, similar to calculation of limit cycle



Food–population model

Constant food:

Scaled Holling type II functional response f(X) with Xk is

half-saturation constant

Population is studied in a semi-chemostat environment

where food concentration X(t) and food concentration in-

flow with Xin time-dependent

dX

dt
= D(Xin(t)−X(t))− {ṗXm}f(X(t))

n∑
i=0

(V
2/3
i Ni)

where embryos do not feed



Outline

• Dynamic Energy Budget individual model

• Formulation of Cohort Projection Model (CPM)

• Case study electric ray fish Torpedo marmorata popu-

lation

• Constant or periodic environment

• Predator (structured) – prey (unstructured) model



Add-my-Pet collection

https://www.bio.vu.nl/thb/deb/deblab/add my pet/index.html



Add-my-Pet collection

Application: Population dynamics

https://www.bio.vu.nl/thb/deb/deblab/add my pet/index.html

Files with code and parameter values



Marbled electric ray Torpedo marmorata

https://en.wikipedia.org/wiki/Torpedo−morata



From AmP-tool package results to population dynamics

• Individual: AmP-tool package results

• Individual: Lifelong development of one individual

• Individual–Population: Lifelong development of one in-

dividual split-up in generations

• Population: Development of all n generations



AmP-tool package results

Calculated total wet-weight species Ww(a) and experimental data
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Left: result from AmP-tool package. Right: results from total life cycle calculations.

Data from: Consalvo, I., Scacco, U., Romanelli, M., and Vacchi, M. (2007).
Comparative study on the reproductive biology of Torpedo torpedo (Linnaeus, 1758)
and T. marmorata (Risso, 1810) in the central Mediterranean Sea. SCIENTIA
MARINA, Barcelona (Spain), 71.
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Energy in reproduction buffer ER(a) [J]
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Outline

• Dynamic Energy Budget individual model

• Formulation of Cohort Projection Model (CPM)

• Case study electric ray fish Torpedo marmorata popu-

lation

• Constant or periodic environment

• Predator (structured) – prey (unstructured) model

Calculation of f such that there is an equilibrium

This equilibrium is neutral stable
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Outline

• Case study electric ray fish Torpedo marmorata popu-

lation

• Constant or periodic environment

• Predator (structured) – prey (unstructured) model

dX

dt
= D(Xin(t)−X(t))− {ṗXm}f(X(t))

n∑
i=0

V
2/3
i Ni



Food–population model j = 0 · · ·150
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Population p-state variables: j = 0 · · ·150
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Population structural biovolume: Y (a) =
∑n

k=0 Vk(a)Nk(a)



Conclusions

• Interface for building population model using individual

DEB model with estimated parameter values

• First single age-dependent life-cycle where empirical

data were used to lifelong interval

• Show of use of time-dependent model in simple semi-

chemostat population–food in chemostat



Conclusions

• Lagrange description: following cohort of identical DEB

individuals

• Population consists of finite generations, number equal

to maximum age

• Population state is defined as the number of individuals

within each generation just after fertilisation whereby

the with-in year development can be derived



• Derived finite dimensional map can be analysed in the

similar way as the Leslie-matrix type discrete matrix

models

• Coupling with other structured population model anal-

ysis approaches: e.g. Escalator Boxcar Train, I(A)BM,

IPM method, PDE, renewal equation

• Post-processing with code for calculation of individual

dynamics freely downloadable software AmP-tool
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