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Motivation: Synchronization in Nature

» Millenium bridge in London
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Oscillators: A Definition

Studying biological rythms corresponds to studying systems of
periodic processes. What does periodic mean in a stochastic
system?

Consider a process in polar coordinates (¢, v:)', where
¢+ € R is the phase process and v; € R is the amplitude
process, such that

Xt =Vt COS(¢t)
Yt = e sin(¢r)
We then define the process z; = (xt, y:)' € R?, t € [0, 00) to

be an oscillator if the phase process has a monotonic
trend.
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https://www.youtube.com/watch?v=5v5eBf2KwF8
https://www.youtube.com/watch?v=eAXVa__XWZ8
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Oscillators: A Definition

Assume a bivariate process z; = (x¢, yt)', such that we
observe something like this

. We define the phase process
] ¢+ € R through the SDE

dd)t = /.Ltdt + O'th

- and

| Xt = Yt cos(¢r)
i Yt = Ve sin(¢e),

for some non-negative
amplitude process ;.
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Oscillators: Multivariate Phase Process

Assume the amplitude process v; = v > 0 constant.
Model:

dope = f(¢r)dt + LdW; (1)

Compare with the Kuramoto model, a classical model of
coupled phases. For i = 1,...,p:

P
a; .
doir = (; Zsm(¢jt — i) + pi) dt + o;dWje
j=1
e Eq. (1) covers Kuramoto! (@]

o We must restrict to linear f(¢;) = Me¢ + pur for now... @

Slide 7/28 — s Ditl — Coi ated oscillating systems — February 6, 2020

Oscillators: Multivariate Phase Process

p oscillators, phase/amplitude-processes ¢y, v: € RP:

do = F(or,7e)dt + TodWe
dve = g(¢e,ve)dt + Zvde

Assume ¢ € R? and E[¢y] strictly monotonic in ¢, with
a < E[¢y(e41)] — E[¢we] < A for some a, A > 0, all t, k.

For ¥'s diagonal, Ités formula yields

1(,%\2 ¢
Xkt) _ —3(0%) —fi(dt,7t) <th) 0 —0o, (th> "
d (}/kt> (fk(gbt,*yt) —%(073)2 > Ykt de+ af 0 Ykt Wi

@
Ykt Ykt Ykt \Ykt

Covers classical oscillators like FitzHugh-Nagumo, van der
Pol, Duffing...
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Linear phase coupling

P
f(de) =D Mi(dje —wj),  k=1,...,p

j=1
for M e RP*P and w = (w1, ...,wp) € RP,

The interactions between oscillators are given by T1.
Diagonal N: No coupling.

The coupling strength: absolute values of entries of 1. The
coupling has a direction!

Row k of I defines how oscillator k depends on the
rest.

Note: w is the attracting state for the phase relations %
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Linear phase coupling

Let ¢ be constant, then

1 2
Xkt —50 —fk(¢>t)> <th> (0 —Uk> <th>
d — (2% dt + AW,
(th> (fk(¢5t) —30% Ykt or 0 Yt ,
where fk(¢t) = Zj I'ijqﬁjt + k-

If M =0 (or diagonal) then p independent oscillators.

N—=

Eigenvalues of the deterministic drift matrix are —"72 +ip,
implying that the solutions oscillate for p # 0.

The oscillations are damped by the negative real part, but
sustained by the noise term.
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Cointegration: Vector Error Correction

Assume x; € RP is /(1) and rewrite

Xt = Axt—1 + €,
as

Axy = Mxz_1 + &,
where

N=—(l, - A).

If x; is /(1) then Ax; is /(0) and thus Mx;_1 must be
1(0).

Slide 11/28 — S Ditl — Coil d oscillating systems — February 6, 2020

Cointegration: Unit Roots
Consider a p-dimensional autoregressive process
Xt = Ax¢—1 + €,
where A € RP*P and ¢; € RP.
The associated characteristic polynomial for x; is
C(z) =det(l, — Az), zeC.
If C(z) # 0 for |z| <1 the process is stationary.

If C(z) =0 for z =1, the process is nonstationary.

A process with a unit root of multiplicity d is integrated of
order d: I(d), and we say that x; has a stochastic

trend.
For x; an I(d) process: Ax; is I(d—1), A9, is 1(0).
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Cointegration: Vector Error Correction
3 possibilities for rank(M) = r:
e [1 has full rank p.
e [1 has reduced rank 0 < r < p.
e [1 has rank 0.
r = p = then x; must be /(0).
r = 0 = no stationary relations of x;.

0 < r < p = r stationary combinations of x; variables.
We then say that x; is a cointegrated process.
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Cointegration: Parameters

If I has rank 0 < r < p, then
N=af,

where a, 8 € RP*" and rank r < p.

We then have
() Lo/ Nx: = (/) Lo af x; = f'x:
is 1(0).

Hence the r linearly independent columns of 3 correspond to
r stationary linear combinations of x;.

Note also that o and § are not uniquely identified!

Solved by normalizing: 3 = (5 Ir )
p—r,r
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Simulation: Winfree oscillator

dke = (kK — ke ) Voedt + o AW,
p
dowe = (Z Myjoj + ’th) dt + o dW,.
j=1
By Ités formula:
-
Ykt
. -1 v ¢_(Uf)2 _ P M..0:
(Fk =Ykt Vkt TVt ORT) — % 21 Mg s + Ve <th> dt
(Zle Myidj + '7kt> ¢ ) Ykt

b\2
(Hk—’th)’th'i‘Vk_tlUZUk —
e -1 _v
{9 o (ka> dW + (Wf %0 7> <ka) dW
O 0 Ykt 0 Ykt Ok Ykt
®
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Estimation

Assume the amplitude process v; = v > 0 constant.
Model:

dpe = (N + p)dt + TdW,

First the rank is estimated through a series of likelihood ratios
tests (Johansen's test).

Then a reduced rank regression with least squares is
performed.
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Simulation: Overall Setup

Shared parameters:

p=3
a(fzags:agzl
Ufzag:azzo.l
k= (0.75,1,1)

Simulate 100k steps with At = 0.001 using Euler-Maruyama,
then subsample every 100th to obtain 1000 observations with
timestep At = 0.1, i.e. t € [0, 100].
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Simulation: Models

Four different systems
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Simulation: Trajectories
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Simulation: Phases
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Simulation: Rank tests for rank(IM)

Johansen rank tests.

Model H, Test values  p-value
Mg =0 14.94 0.751
r<i1 6.73 0.519
r<? 0.17 0.635
My =0 52.50 0.000
r<i1 5.61 0.489
r<?2 0.78 0.306
M, r=20 64.78 0.000
r<i1 6.57 0.305
r<2 0.00 0.983
Ms r=0 77.39 0.000
r<i1 33.24 0.000
r<?2 0.01 0.899 %
o
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Simulation: 1y model
Fitted model My with unrestricted o, 3:

Para- True Unrestricted «, 8

meter value Estimate Std. Error  p value
o1 -0.5 -0.471 0.072 < 0.001
a2 0 0.074 0.075 0.329
as 0 -0.121 0.077 0.117
B 1 1

B2 -1 -1.028

B3 0 0.031

11 6 6.321 0.214 < 0.001
2 5 4.810 0.224 < 0.001
3 5 5.209 0.230 < 0.001

5 0 . —0.471 0.484 —-0.015
M = 0 0 0], M= 0074 —-0.076 0.002
0 —0.121 0.124 —0.004
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Standard measures of coupling

The mean phase coherence measure is

N
1 (b o —b:
R(die, djt) = ‘N E e (itn=0jtn)
n=1

Note: symmetrical, no direction.

Question: Does the co-integration analysis provide more
power to detect coupling?

We look at model
M=eNs3, e€][0,1]

where

N @ o%

d oscillating systems — February 6, 2020
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Fitted model Ty with restricted «, (3:
Para- True Restricted «, 8
meter value Estimate Std. Error  p value
[e%1 -0.5 -0.469 0.072 < 0.001
(0%) 0 0
as 0 0
B1 1 1
Ba 1 -1
B3 0 0
1 6 6.066 0.180 < 0.001
2 5 5.006 0.188 < 0.001
03 5 4.886 0.193 < 0.001
—-05 05 O ) —0.469 0.469 O
M= 0 0 0], M= 0 0 0
0 0 O 0 0 0
Conclusion: We recover the correct uni-directional
coupling structure.
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Detecting coupling
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Analysis of EEG data Analysis of EEG data
Prior to seizure During seizure
T FPIFS < FP2-F4 —— FPLFT — FP2FS H, Test values p-value ‘ Test values p-value
FP1-F3- e R e
e - n r=20 105.87 0.000 1132.64 0.000
e S SR WMWWMWWMWWW r<i 42.82  0.000 41.68  0.008
o i <2 9.98 0.053 7.19 0.618
W Ep1 7 imgsremvmpsnsopdi¥l | WNMJWWM M{‘\WWW r=
r<3 0.46 0.439 0.72 0.786
FP2-FB-  hrenmt v meutoad ad At st B AN A MWWMMMWMWMMW
Tabel: Rank tests for EEG phases in the bottom of previous Figure.
The rank is determined to r = 2 in both periods, although the
g conclusion is far stronger during the seizure. The significance of the
) statistics are found using 5000 bootstrap samples prior to the
g g seizure due the border limit case of around 5%, during the seizure
the p-value is determined from 2000 bootstrap samples.
° 2960 2970 2980 2990 3000 3010 3020 3030
Seconds
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Analysis of EEG data Outlook: Challenges
Para- Prior to seizure During seizure e Interpret cointegration models for coupled oscillators.
meter Estimate Std. Error  p value ‘ Estimate Std. Error  p value
e Derive a non-linear cointegration mechanism to model
QFP1-F3,1 -0.100 0.018 < 0.001 -0.462 0.028 < 0.001 K g
QFP1F7,1 -0.002 0.019 0.930 -0.308 0.032 < 0.001 uramoto.
QFP2-F4,1 -0.035 0.017 0.044 -0.722 0.035 < 0.001 . . nr L
orparet 0115 0030 < 0.001 0648 0042 < 0.001 e Derive a framework with non-linear deterministic trends
arpirse | -0.117 0.016 < 0.001 0.041 0.033 0212 for the model.
QFP1-F7,2 -0.024 0.016 0.147 0.071 0.037 0.057 e Extend to hich-di . | t
QFP2-Fa2 -0.026 0.015 0.084 0.173 0.041 < 0.001 xtend to high-dimensional systems.
QFP2-F8,2 -0.049 0.026 0.063 0.468 0.049 < 0.001
BrP2-Fa,1 -3.424 -0.036
Brp2rFs1 2.610 -0.573 Reference:
Brpa.ra 2.486 -0.840
Brp2-Fs,2 -3.631 0.188 Jacob @stergaard, Anders Rahbek and Susanne Ditlevsen
HFP1-F3 25.210 2162 <0.001 | 39.647 1.307 < 0.001 (2017): Oscillating systems with cointegrated phase
UFP1-F7 30.648 2252 < 0.001 36.499 1.473 < 0.001 J | of Math ical Biol
[iFp2-Fa 39.058 2107 <0001 | 58268 1.608 < 0.001 processes. Journal of Mathematical Biology.
{iFP2.Fa 48.853 3615 <0001 | 54.765 1.947 <%L1 %
[ [
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