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1 Presentation of the model
model
system of equations

2 Study of the system of equations
study the stability of the zero steady-state using blow-up
study of the polynomially growing regime using slow-fast dynamics
(Fenichel theory)



Introduction

Figure 1 – figures from (top) [WZF+15] and (bottom) [ZSD+18]



We model the growth of p62-Ubiquitin aggregates
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Figure 2 – reactions taken into account



The model leads to an ODE system



ṗ = (κ1 − κ3p)(nr− p − 2q) + κ−q(1− (n − 1)
p

(n − 2)r
)− (κ2 + κ−1)p

q̇ = κ2p + κ3p(nr− p − 2q)− κ−q

ṙ = κ2p − κ−qα, with α =
nr− 2q

(n − 2)r

nr− p − 2q ≥ 0 0 ≤ α ≤ 1
(1)

Obtention of the equation for the evolution of r

κ2
κ−α

κ−(1− α)



The simulations reveal three regimes

Evolution of an aggregate (p, q, r) of initial size (2, 4, 3) with parameters
κ1 = κ2 = κ3 = κ−1 = 1
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c) κ− = 0.2
polynomially

growing solution



The conditions under which the three regimes happen are
conjectured

(1) can undergo three regimes under the following conditions :

if κ2−(n − 1) + κ−(κ−1 + κ1)(n − 2) ≥ κ1κ2(n − 2)2 > 0(a) holds,
then (0, 0, 0) is stable.

if κ2−(n − 1) + κ−(κ−1 + κ1)(n − 2) ≤ κ1κ2(n − 2)2 ≤ 0(b1) and
4κ1κ2(n − 2)2 ≤ κ2−n2(n − 1) + 2κ−(κ−1 + κ1)n(n − 2) ≤ 0(b2)
holds,
then (p, q, r) converges towards a non-trivial steady-state.

if 4κ1κ2(n − 2)2 ≥ κ2−n2(n − 1) + 2κ−(κ−1 + κ1)n(n − 2) > 0(c)
holds,
then (p, q, r) undergoes a polynomial growth, more precisely :

p = p1t + o(t)

q = q2t
2 + o(t2)

r = r2t
2 + o(t2).



The stability of the zero steady-state can be studied
thanks to blow-up

Differentiation matrix associated with (1) not well-defined
=⇒ change of variable τ =

∫ t
0

ds
r(s) .

(0, 0, 0) is not an hyperbolic point for the new system.

blow-up in the q-direction : (p1, q1, r1) := ( p
q , q,

r
q ).

q′1 =q1r1 (κ2p1 − κ−) ,

p′1 =κ1(nr1 − p1 − 2)r1 + κ−r1 −
κ−(n − 1)

n − 2
p1 − (κ2 + κ−1)p1r1

− p1r1(κ2p1 − κ−) ,

r ′1 =(1− r1)

(
κ2p1r1 +

κ−
n − 2

(2− (n − 2)r1)

)
.



(0, 0, 0) is asymptotically locally stable when (a) holds

Theorem

If (a) holds, then (0, 0, 0) is locally asymptotically stable.

p1

r1

n − 2

1

2/n

κ−
κ2

nr − p − 2q ≥ 0
0 ≤ α < 1

We distinguish two cases :

κ2p1 − κ− < 0
then, q̇1 < 0.

κ2p1 − κ− > 0
then, ṗ1 < 0 under (a)

Hence, when q → 0, then p := p1q, r := r1q → 0, because p1, r1 bdd.



Study of the asymptotical locally stability of the
polynomially growing regime using slow-fast dynamics

Theorem

Assuming that (C) holds, if p, q, and r tend towards infinity, then they
grow asymptotically locally in the following polynomial manner with t,
namely

p = p1t + o(t),
q = q2t

2 + o(t2),
r = r2t

2 + o(t2).



A Poincaré-compactification-like change of variable leads
to a slow-fast dynamics with three separated timescales

Change of variable (inspired by Poincaré-compactification) :

(p, q, r)→ (u :=
p√
p + q

, v :=
2p + 2q − nr√

p + q
,w :=

1√
p + q

)

W := εw ε� 1

u̇ =
1

εW
(−κ3u(u − v) + κ−3) + O(1)

v̇ = 2κ1(u − v)− 2κ−1u − nκ2u +
nκ−3

(n − 2)

(1− εuW )

(2− εvW )
(2u − nv) + O(ε)

Ẇ = −εW
2

2
(κ1(u − v)− κ−1u − nκ−3

(n − 1)

(n − 2)

(1− εuW )

(2− εvW )
u)

Slow-fast dynamics system with three timescales completely separated : 1
ε ,

1 and ε.



An equation for W = 1√
p+q

concludes the proof

dW

dt
= −W 2

2
(4n(n − 2)2κ1κ2 − 2n2(n − 2)κ−(κ1 + κ−1)− n3(n − 1)κ2−)︸ ︷︷ ︸

>0 iff (c)holds

W grows like 1
t under (c).

q, r grow like t2, p grow like t, when p + q tend towards infinity.
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Conclusion

system of equations describing the growth of p62-ubiquitin aggregates

study of the system through dynamical systems methods (blow-up,
slow-fast dynamics)

perspective :
description of the growth of several p62-ubiquitin aggregates taking
into account coagulation of aggregates observed experimentally which
leads to a transport-coagulation equation,
theoretical study and simulations of transport-coagulation equations
to compare with the experimental data.
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