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Introduction and Motivation

Chronic viral infection can persist in an infected person for
years.

During this time the virus evades the host’s immune
system by evolving new phenotypes (cf. HIV).

New strains can be transmitted.

Treatment/prophylaxis introduce additional evolutionary
pressure, facilitating appearance of new, resistant virus
strains.
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Introduction and Motivation

We aim at

developing a unified framework for modeling and analyzing the
interplay between local, within-host mutation dynamics and
global, population-level distribution of different virus strains
while taking into account the effects of treatment and
prophylaxis.

At this stage we

consider two models: a baseline and an extended one;

compute the equilibrium distribution of virus strains;

characterize the effect of using therapeutic and
prophylactic controls;

carry out extensive numerical analysis.
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Baseline model

İAi = φi(X)S − γIAi − µIAi

İCi = γIAi − uTICi − µICi

Ṫ = uT

n∑
i=1

ICi − µT

Ṡ = µ−
n∑
i=1

φi(X)S − µS

Genotypic variability.

No phenotypic variability

Transmission rate:

φi(X) = βC

ξIAi +

n∑
j=1

αijICj


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Ṫ = uT

n∑
i=1

ICi − µT
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İAi = φi(X)S − γIAi − µIAi
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Mutation coefficients αij

αij ∈ [0, 1] denotes the average fraction of type i viruses in the viral
population of an individual initially infected by the type j virus.

A1.
∑n
i=1 αij = 1 for all j = 1, . . . , n.

A2. αii 6= 0 for all i = 1, . . . , n.

A = [αij ]i,j=1,...,n is a column stochastic matrix.
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Extended model

İAi = φi(X)S + (1− ψi)φi(X)P − γIAi − µIAi

İCi = γIAi + ζiTi − uTICi − µICi
Ṫi = uTICi − ζiTi − µTi

Ṡ = µ− uPS −
n∑
i=1

φi(X)S + δP − µS

Ṗ = uPS −
n∑
i=1

(1− ψi)φi(X)P − δP − µP

Phenotypic variability:

Variable contagiousness;
Variable resistance to
prophylactic measures;
Variable resistance to
therapeutic measures.
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Extended model

Using matrix notation we write down 3n+ 2 DEs

İA = BC (ξ IA + A IC)S + BC ( E−Ψ) (ξ I A + A IC)P − (γ + µ) I A

İC = γ IA + ZT− (uT + µ) IC

Ṫ = uT IC − (µE + Z) T

Ṡ = µ+ δP − 1[1×n] BC (ξ I A + A IC)S − (uP + µ)S

Ṗ = uPS − 1[1×n] BC ( E−Ψ) (ξ I A + A IC)P − (δ + µ)P,

where

IA =

IA1

...
IAn

 (same IC,T), and BC =

βC1 0
. . .

0 βCn

 (same Z,Ψ).
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Baseline model: R0

Basic reproduction number

For any choice of parameters αij ≥ 0 such that
∑
i αij = 1 and

αii 6= 0 for all i, j = 1, . . . , n, the controlled basic reproduction number
for the baseline system is given by

R0(uT) = βC
ξ(uT + µ) + γ

(γ + µ)(uT + µ)
.

Sensitivity coefficient: R1

R0(uT) = R0 +RT1 uT +O(u2
T) : see (a)

≈ βC
ξµ+ γ

(γ + µ)µ
− βCγ

µ2 (γ + µ)
uT.

aDG, Bulla, Romero-Severson, Systematic evaluation..., JTB, Vol. 462, 2019.
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Baseline model: XEE

Endemic equilibrium

Let A be an irreducible non-negative column stochastic matrix s. t.
αii 6= 0 for all i = 1, ..., n. Then the endemic equilibrium for the
baseline syst. exists and is unique if R0 > 1.

Let, furthermore, v> = [v1, . . . , vn] be the normalized right dominant
eigenvector of A satisfying

∑n
i=1 vi = 1. The components of the

endemic equilibrium state are given by

I∗Ai =
µ

(γ + µ)

(
1− 1

R0

)
vi, I

∗
Ci =

γµ

(γ + µ)(uT + µ)

(
1− 1

R0

)
vi,

T ∗ =
γu

(γ + µ)(uT + µ)

(
1− 1

R0

)
, S∗ =

1

R0
.
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Extended model: R0

Basic reproduction number

The controlled basic reproduction number of the extended system is
given by

R0(uT, uP) =
β̄C(γ + ξµ)

(γ + µ)µ
ρ (Q(uP)N(uT)) ,

where β̄C = maxi βCi,

B̄C = β̄−1
C BC,

Q(uP) = B̄C [ En − PDFE(uP)Ψ],

N(uT) = 1
γ+ξµ [ξµEn + γA∆(uT)], and

∆(uT) = ( Z + (µ+ uT) En)−1( Z + µEn).
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Extended model: Sensitivity analysis

Sensitivity coefficients RT1 and RP1

Let A be irreducible and let w0 and v0 be the right and the left
dominant eigenvectors of Q(0)N(0) = B̄C Ā, corresponding to
ρ
(

B̄C Ā
)

and normalized such that w>0 v0 = 1. The controlled basic

reproduction number Rβ0 (uT, uP) can be written as

Rβ0 (uT, uP) = Rβ0 +Rβ1,TuT +Rβ1,PuP +O(‖(uT, uP)‖2), (1)

where Rβ0 = β̄C(γ+ξµ)
(γ+µ)µ ρ

(
B̄C Ā

)
,

Rβ1,T = −w>0
[
Rβ0 En − ξ

(γ+µ) BC

]
( Z + µEn)−1v0, and

Rβ1,P = −Rβ0 1
(δ+µ)w

>
0 Ψv0.
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Two controls: which one is more efficient?

Simplified model: no variability in transmission rates

Assume BC = βC En. The control uT is locally more efficient than uP

if it holds that

γ

γ + ξµ
w>0 ( Z + µEn)−1v0 >

1

(δ + µ)
w>0 Ψv0. (*)

Note: τi = 1/(ζi + µ) and π = 1/(δ + µ) are the average duration of
being either on treatment or on prophylaxis and recall that
w>0 = [1, . . . , 1]. Then we can write (*) as∑

i

γ

γ + ξµ
τiv0i >

∑
i

ψiπv0i.

Protection conferred by treatment/prophylaxis against the ith strain.
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Two controls: which one is more efficient?

Full scale model

uT is locally more efficient than uP if

∑
i

[
1− βAiθA

Rβ0

]
τiw0iv0i >

∑
i

ψiπw0iv0i,

where θA = 1/(γ + µ) is the average duration of the acute stage.

The parameters Rβ1,T and Rβ1,P are the sum of products average
duration of the medical intervention × protection conferred by the
intervention taken with the weights corresponding to the stationary
distribution of the virus strains.
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Numerical results: Setup

We consider a model where

226 virus strains,

4 infection stages: 1 acute and 3 chronic,

infected either develop or not develop their own antibodies,

5 levels of prophylaxis depending on the concentration of the aB
in the blood,

people on prophylaxis can get infected as well, although at
reduced (and strain-dependent) rate.

In total, there are 4076 DEs.
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Numerical results
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Numerical results: distribution of strains
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Conclusions

There are a number of issues to be resolved:

Classification of virus strains

Determining the mutation probabilities:

averaged Markov model evolution? transition rates?
estimation of the evolutionary distance, ...

Protection given by prophylaxis:

strain-specific protection,
pharmacokinetics, etc...
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Thank you!
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